Principal <i>n</i>-Ideals which Form Generalized Stone Nearlattices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Semi Prime Ideals in Nearlattices

Recently Yehuda Rav has given the concept of Semi prime ideals in a general lattice by generalizing the notion of 0-distributive lattices. In this paper we study several properties of these ideals in a general nearlattice and include some of their characterizations. We give some results regarding maximal filters and include a number of Separation properties in a general nearlattice with respect...

متن کامل

Characterizations of m - Normal Nearlattices in terms of Principal n - Ideals

A convex subnearlattice of a nearlattice S containing a fixed element n∈S is called an n-ideal. The n-ideal generated by a single element is called a principal n-ideal. The set of finitely generated principal nideals is denoted by Pn(S), which is a nearlattice. A distributive nearlattice S with 0 is called m-normal if its every prime ideal contains at most m number of minimal prime ideals. In t...

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

Generalized Ideals in Orthoalgebras

Since in 1936 Birkhoff and von Neumann regarded the lattice of all closed subspaces of a separable infinite-dimensional Hilbert space that is an orthomodular lattice as a proposition system for a quantum mechanical entity (Miklós, 1998), orthomodular lattices have been considered as a mathematical model for a calculus of quantum logic. With the development of the theory of quantum logics, ortho...

متن کامل

On Ideals Which Have the Weakly Insertion of Factors Property

A one-sided ideal of a ring has the insertion of factors property (or simply, IFP) if implies r for . We say a one-sided ideal of has the weakly IFP if for each , implies , for some non-negative integer . We give some examples of ideals which have the weakly IFP but have not the IFP. Connections between ideals of which have the IFP and related ideals of some ring extensions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Research

سال: 2014

ISSN: 2070-0245,2070-0237

DOI: 10.3329/jsr.v6i2.10818